Skip to main content

Main menu

  • Home
  • About the journal
    • General Information
    • Scope
    • Editorial Board
    • Impact & metrics
    • Benefits of Publishing
    • Advertising/sponsorship
    • About the Biochemical Society
  • Current Issue
  • For Authors
    • Submit Your Paper
    • Submission Guidelines
    • Editorial Policy
    • Open Access Policy
    • Rights and Permissions
    • Biochemical Society member benefits
  • For Librarians
    • Open Access Policy
    • Terms and conditions
  • For Readers
    • Rights and Permissions
    • Biochemical Society member benefits
  • Collections
  • Help
    • Technical Support
    • Contact Us
  • Other Publications
    • NEW: Emerging Topics in Life Sciences
    • NEW: Neuronal Signaling
    • Clinical Science
    • Biochemical Journal
    • Biochemical Society Transactions
    • Bioscience Reports
    • Essays in Biochemistry
    • Biochemical Society Symposia
    • Cell Signalling Biology
    • Glossary of Biochemistry and Molecular Biology
    • The Biochemist
    • Biochemical Society

User menu

  • Log-in
  • Subscribe
  • Contact Us

Search

  • Advanced search
  • Other Publications
    • NEW: Emerging Topics in Life Sciences
    • NEW: Neuronal Signaling
    • Clinical Science
    • Biochemical Journal
    • Biochemical Society Transactions
    • Bioscience Reports
    • Essays in Biochemistry
    • Biochemical Society Symposia
    • Cell Signalling Biology
    • Glossary of Biochemistry and Molecular Biology
    • The Biochemist
    • Biochemical Society

Log-in

Sign-up for alerts   
  • My Cart
Neuronal Signaling
Browse Archive
Advanced Search
  • Home
  • About the journal
    • General Information
    • Scope
    • Editorial Board
    • Impact & metrics
    • Benefits of Publishing
    • Advertising/sponsorship
    • About the Biochemical Society
  • Current Issue
  • For Authors
    • Submit Your Paper
    • Submission Guidelines
    • Editorial Policy
    • Open Access Policy
    • Rights and Permissions
    • Biochemical Society member benefits
  • For Librarians
    • Open Access Policy
    • Terms and conditions
  • For Readers
    • Rights and Permissions
    • Biochemical Society member benefits
  • Collections
  • Help
    • Technical Support
    • Contact Us

Review Article

A role for viral infections in Parkinson’s etiology?

Laura K. Olsen, Eilis Dowd, Declan P. McKernan
Neuronal Signaling Apr 16, 2018, 2 (2) NS20170166; DOI: 10.1042/NS20170166
Laura K. Olsen
Pharmacology and Therapeutics, National University of Ireland, Galway, Ireland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • View author's works on this site
Eilis Dowd
Pharmacology and Therapeutics, National University of Ireland, Galway, Ireland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • View author's works on this site
Declan P. McKernan
Pharmacology and Therapeutics, National University of Ireland, Galway, Ireland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • View author's works on this site
  • For correspondence: declan.mckernan@nuigalway.ie
  • Article
  • Figures
  • Info & Metrics
  • PDF
Loading

Abstract

Despite over 200 years since its first description by James Parkinson, the cause(s) of most cases of Parkinson’s disease (PD) are yet to be elucidated. The disparity between the current understanding of PD symptomology and pathology has led to numerous symptomatic therapies, but no strategy for prevention or disease cure. An association between certain viral infections and neurodegenerative diseases has been recognized, but largely ignored or dismissed as controversial, for decades. Recent epidemiological studies have renewed scientific interest in investigating microbial interactions with the central nervous system (CNS). This review examines past and current clinical findings and overviews the potential molecular implications of viruses in PD pathology.

  • neurodegeneration
  • neuroinflammation
  • Parkinsons disease
  • viral infection

Introduction

Parkinson’s disease (PD), the most common neurodegenerative motor disorder, is generally characterized by the selective degeneration of dopaminergic neurones in the substantia nigra pars compacta (SN) of the midbrain, resulting in decreased dopamine (DA) transmission throughout the nigrostriatal pathway [1]. PD symptoms include resting tremors, unstable posture, bradykinesia, rigidity, and non-motor symptoms (such as dysphagia, olfactory impairment, sleep disturbances, dementia, and constipation) [2–4]. This progressive neurodegenerative disease can be familial (associated with early onset) or sporadic [5–8]. Hallmark pathological features of both familial and sporadic PD include uncontrolled protein aggregation (primarily α-synuclein fibrils forming Lewy bodies), oxidative stress (OS), mitochondrial dysfunction, chronic neuroinflammation (including microglia activation and astrogliosis), and autophagy disruption [5,9–11].

Despite over two centuries of investigation, the cause(s) of most cases of PD are still unknown. Epidemiological studies suggest there is a gene–environment interaction involved in the development of sporadic/idiopathic PD (iPD). Previous studies suggest a correlation between iPD development and exposure to pesticides or heavy metals, traumatic brain injury, and viral/bacterial infection [12–14]. Although multiple reviews describe the association between pesticides and PD (most notable rotenone and paraquat) [15,16], there are few reviews detailing all the epidemiological, post-mortem, and preclinical evidence surrounding the association between viral infections and PD. As urgently expressed by both scientists and clinicians in a recent article by Itzhaki et al. [17], previous studies identifying microbial associations with Alzheimer’s disease (AD) (the most common neurodegenerative disorder) [18,19,20,21,22] have largely been ignored or dismissed as controversial despite the current lack of progress for understanding or curing this disease. Similarly, the same lack of progress and dismissal of previous epidemiological findings regarding viral infections can be said for PD. The purpose of this review is to revisit historical conclusions, provide a comprehensive update on recent clinical findings, and overview the potential molecular and cellular implications of neurotropic viruses in PD pathology.

Viruses as a risk factor for PD: sifting through historical and clinical evidence

The first suggestion of a relationship between viral infections and PD was the 1920–1930s influenza epidemic, which was associated with encephalitis lethargica (EL) [23]. Although EL patients exhibited drastic irregularities in disease progression and displayed ‘symptomatological polymorphisms,’ EL has been described as a type of ‘sleeping sickness’ which can include headache, nausea, fever, uncontrollable sleepiness, catatonia, and sometimes coma [24]. The EL epidemic coincided with an equally significant influenza pandemic (the Spanish influenza), leading many clinicians and other prominent scientists from that time to believe there was a causal relationship (or at least an epidemiological association) between these conditions [25]. Multiple studies investigating the preserved brain samples of EL patients from the epidemic years (1918–1930) found no evidence of the 1918 influenza virus in these tissues [26–28]. Also, 1918 influenza-derived sequences revealed mutations in two surface protein-encoding genes that suggest this viral strain was incapable of replicating outside of the respiratory system [29,30]. Reports from more current cases of EL suggest that EL may be an auto-antibody disorder [23,31–37].

Since the EL epidemic, numerous cases of post-encephalitic Parkinsonism (PEP) after certain viral infections (H5N1, coxsackie virus, Japanese encephalitis B., St. Louis viral encephalopathy, and HIV) have been reported, but these cases of Parkinsonism often do not exhibit the same cellular or molecular pathologies as seen in PD and are suggested to be ‘phenocopies’ of PD [38–44]. Although these acute cases of viral infection did not present with classical PD, these findings (along with the believed EL association with PD) led to multiple clinical studies in the late 1970s and early 1980s investigating the relationship between viral infections and PD.

Studies examining the relationship between viruses and PD are detailed in Table 1. A study by Elizan et al. [45] found a significant relationship between viruses (herpes simplex virus (HSV), measles, and influenza A) and iPD, but these findings may be confounded since their control group included amyotrophic lateral sclerosis and AD patients (conditions which have since been suggested to be associated with certain viral infections themselves). Another set of studies found an increased incidence of PD amongst those chronically infected with hepatitis C virus (HCV), but these studies are confounded by the fact that some HCV patients received interferon (IFN) treatments; with a follow-up investigation finding a much stronger relationship between IFN-treated groups and PD (249 PD incidents/100000 person-years) than non-IFN-treated groups (30 PD incidents/100000 person-years) [46–48]. Multiple studies by Marttila and colleagues, using a variety of antibody detection techniques (complement fixation, RIA, indirect immunofluorescent assay, microindirect hemagglutination), found a significant increase in HSV antibody titers and mean HSV titer in iPD patient serum [49–51]. A study using the microindirect hemagglutination test was able to differentiate between HSV-I and HSV-II; finding that increases in antibody titers and mean titer amongst iPD patients was specific to HSV-I only (not HSV-II) [51]. Other studies have questioned iPD patients for their history of HSV, measles, and influenza A infection with conflicting results (see Table 1). Although a significant association was found between severity and frequency of influenza A infection and PD incidence (with no association for HSV), the conclusions based on these studies are limited in that they rely on accurate patient memory and interpretation of their condition (patients cannot be expected to correctly diagnose their previous exposure or infection with viruses) [52,53]. A more recent study that examined PD patient serum found a more frequent incidence of HSV-I infections amongst iPD patients [54], further supporting the findings of the Marttila studies. Based on the aforementioned clinical evidence, HSV-I and strains of influenza A will be reviewed for their neurovirulence and association with PD-like pathology in the central nervous system (CNS). Molecular and cellular events associated with HSV-I/influenza A infection will be discussed for their potential implications in PD.

View this table:
  • View inline
  • View popup
Table 1 Viral infection associations with PD

CNS viral entry: HSV-I and influenza A

Since the primary disease pathology characteristics of PD exist in the CNS, it may be relevant (but possibly not crucial) to study the neurovirulence of viruses associated with PD. HSV-I and influenza A have very different life cycles, resulting in different strategies for survival/replication within the host. Influenza A is generally a transient infection, lasting only a few weeks inside the host [57]. On the other hand, an acute infection of HSV-I (presented as epithelial blistering in the mouth or genitalia) is followed by viral latency, which is generally established in the trigeminal ganglia (TG) [58]. Although dormant, HSV-I is a chronic infection that maintains latency in sensory ganglia that innervate the brainstem and cerebellum of the CNS [59,60]. Primarily residing in the respiratory system during acute infection, influenza A can enter the CNS through the olfactory nerve [61]. Found to be axonally transported via cytoskeleton intermediate filaments, influenza A can follow olfactory neurone projections through the cribiform plate in the nasal cavity into the olfactory bulbs and olfactory tracts of the CNS [62,63].

Previously, viral entry of either HSV-I or influenza A into the CNS was considered fatal (or nearly fatal) via the rare condition of herpes simplex encephalitis (HSE) or acute encephalitis, respectively [38,64,65]. More recent findings now suggest that viral entry into the CNS does not necessarily result in a drastic, usually fatal, immune response. Although many studies have not found the existence of HSV-I DNA or antigens in post-mortem PD patient brains [66,67]; multiple studies have found HSV-I DNA in the brains of normal aged humans and AD patients [22,66,68–70]. The presence of HSV-I DNA was associated with increased age and the characteristic amyloid-β plaques found in AD [70,22]. Determining the neurovirulence and brain cell localization of influenza A in the CNS of PD patients is far more difficult since it is a transient infection. Although partially determined by the route of infection, preclinical mouse models of neurovirulent strains of influenza A have found this infection to successfully enter the CNS and localize in the SN, thalamus, hippocampus, locus coeruleus, ganglia (trigeminal, vagal, spinal, and sympathetic trunk ganglia), olfactory bulbs, and thoracic spinal cord around day 10 post-infection [39,71–73]. Influenza A antigens were also found to preferentially exist in catecholaminergic neurones, meninges, and ependymal areas [74]. Despite influenza A entry into the CNS in these mouse models, viral replication and maintenance in the CNS did not extend past 2 weeks, and was generally non-existent in the CNS by day 21 post-infection. More relevant to PD pathology, the neurotropic H5N1 influenza virus was found to induce long lasting microglia activation and α-synuclein phosphorylation and aggregation in the mouse SN post-infection [39,75].

An increased incidence of HSV-I DNA in the CNS and increased sensitivity to respiratory infections amongst the elderly [76,77] is worth noting since the greatest risk factor for PD is old age [78]. With age, the blood–brain barrier (BBB) becomes more permeable, resulting in more fluid entry of peripheral proteins into the CNS (including neurotoxic peripheral pro-inflammatory mediators) [79]. The immune system is also compromised in the elderly, with increases in pro-inflammatory cytokines and decreases in lymphocytes [80]. Disruptions to the BBB and normal immune processes amongst the aged population could also result in increased entry of HSV-I and influenza A into the CNS during infection/HSV-I reactivation. Since HSV-I and some strains of influenza A have demonstrated their ability to infect the CNS (especially amongst the elderly) without immediately fatal consequences, the effects of these viral infections in host neurones in the CNS will be reviewed, with a focus on PD-related pathology.

Viral infection in the CNS: inflammation, synaptic dysfunction, and autophagy disruption

Upon viral infection, the host immune system usually becomes activated and attempts to remove or destroy the invading pathogen via inflammatory mediators, autophagy degradation, or sometimes controlled cell death of infected cells [81]. Although viral pathogens have evolved multiple ways of evading the host immune response (and so host clearance of viral pathogens), host immune circumvention is dependent on virus strain, evasion strategy, and host cell type. Of relevance to PD, the viral evasion of the host immune response may be modulated by BBB integrity, CNS immune cell sensitivity, and duration/severity of infection. The next few sections review viral modulation of the host immune/autophagy response due to HSV-I or influenza A infection. Virus mediated inflammation, synaptic dysfunction, and autophagy disruption in the CNS will be discussed.

Neuroinflammation

The human immune system is divided into the adaptive (memory-based specific response) and innate (genetically conserved, non-specific response) immune systems [82]. Macrophages are able to attack pathogens due to pattern-recognition receptors (PRRs) that have evolved to recognize pathogen-associated molecular patterns (PAMPs) [83,84]. Meanwhile, the adaptive immune response uses lymphocytes (B and T cells) to ‘remember’ and attack the pathogen more efficiently [85,86]. This immune response sometimes includes cytotoxic lymphocytes, which kill and destroy infected host cells.

Of importance to HSV-I, cluster of differentiation 8 (CD8+) T cells have been found to have HSV-I epitopes and block reactivation [87,88]. Although involved in hindering HSV-I reactivation, there are suggestions that these T cells lead to chronic inflammation. Residual lymphocytes were found to recognize HSV-I during latency in the TG, resulting in cytokine release, T-cell exhaustion, and eventual allowing of viral reactivation [89–91]. The H5N1 influenza A strain was also found to induce excessive peripheral T-cell activation [92]. There is evidence of T-cell population modulation in PD as well. T-cell population increase/decrease and impairment in PD depends on T-cell type, and more recently T cells have been found to recognize α-synuclein epitopes [93,94]. Interestingly, recent studies identified homologous cross-reactivity between HSV-I and α-synuclein, suggesting that HSV-I may induce an autoimmune response [95]. Indeed, auto-antibodies against HSV-I peptide were cross-reactive with an α-synuclein epitope [95].

While lymphocytes are involved in the adaptive immune response, the innate immune system also initiates an immediate response due to PAMPs. A key set of PRRs regulating the innate immune system are the Toll-like receptors (TLRs). TLRs are glycoprotein transmembrane receptors that recognize PAMPs (such as lipopolysaccharides, dsDNA/RNA, ssRNA) [96]. Of significance to HSV-I and influenza A, TLR3 is known to recognize viral dsRNA that is present during the viral life cycle within infected host cells [97,98]. TLR3 activation leads to pro-inflammatory cytokine and type I IFN-α/β production, and regulation of DNA expression through nuclear factor κ-light-chain-enhancer of activated B (NF-κB) and IFN regulatory factor (IRF) activation [99].

Neuroinflammation in PD patients has previously been investigated to characterize potential biomarkers. Genetic mutations in PD-related genes (lrrk2 and parkin) have been found to regulate the immune system response [100–104]. Also, single nucleotide polymorphisms in the MHC-II (an antigen-presenting component of specific adaptive immune cells) locus were associated with an increased incidence of PD [105–108]. Post-mortem studies have found increased levels of pro-inflammatory cytokines [109]. They also found increased levels of IFNs and p65 subunits of NF-κB [110]. Cerebrospinal fluid (CSF) and peripheral levels of cytokines are also elevated in PD [110,111]. Although the role of these cytokines/IFNs in PD is unknown, animal models have demonstrated that increases in pro-inflammatory mediators results in dopaminergic neurodegeneration [112,113]. Examination of the TLR profile in animal models found increases in TLR3/4 expression in the striatum in response to OS and the pesticide rotenone, possibly leaving these cell populations/brain regions more sensitive to an infection [114]. Interestingly, certain viral infections have found ways to circumvent IFN-stimulated pathways, possibly allowing them to enter and remain dormant in the CNS.

Although the host immune system is well evolved to combat viral infections through type 1 IFNs and IFN-stimulated genes (ISGs), HSV-I and influenza A have also evolved ways to evade this host immune response. HSV-I proteins inhibit NF-κB and IRF3 (a TLR3 downstream regulator of IFNs) activation [115–117]. The influenza A non-structural protein 1 (NS1) prevents the host innate immune response and cellular apoptosis of infected cells by suppressing IFN activation through multiple routes [118]. Also, NS1 regulates IFN-α/β receptor subunit 1 (IFNAR1) surface expression [119]. Due to suppression of the innate immune system, influenza A infection of neurones only leads to increases in tumor necrosis factor-α (TNF-α) release, not interleukin-6 (IL-6) or IFNs [120].

Despite multiple HSV-I proteins working to dampen IFN signaling, still there has been clear evidence of IFN signaling and regulation of viral replication in HSV-I infected cells. This is not surprising since HSV-I inhibition or activation of IRF3 appears to be cell-type dependent [117]. Sensory neurones, where HSV-I latency is generally maintained, are innately unable to mount a large IFN response [121,122,,123]. This may be why sensory neurones are ideal for HSV-I to maintain latency, but even so, some level of IFN signaling may be required for HSV-I reactivation. Latency-associated transcripts (LATs) have not been found to produce an inflammatory cytokine/IFN response themselves, but instead may require some cytokines/IFNs to initiate reactivation [124,125]. One study suggested that IFNs regulate LAT expression in a way that benefits HSV-I infection; by promoting neurone cell survival throughout latency, HSV-I is provided an opportunity for reactivation and viral spread [125]. Interestingly, neuronal IFN-β suppression was associated with α-synuclein accumulation and PD-like neurodegeneration [126].

Although HSV-I and influenza A viruses have evolved ways to circumvent neuronal innate immune sensing of infection, other CNS cells can still sense and defend against pathogens (see Table 2). Glial cells in the CNS mainly function as regulators of the cellular environment to promote healthy neuronal cell function. Astrocytes (the most abundant cell type in the CNS) support neurone homeostasis by regulating synaptic activity, assisting in BBB formation, and interacting with immune cells. They regulate neurotransmission and metabolism by controlling extracellular potassium levels, uptake of neurotransmitters (such as glutamate), and storing glycogen/exporting lactate [127]. Microglia cells act as resident immune cells in the CNS, with the capability of sensing, engulfing, and degrading invading pathogens [128]. The activation of microglia can have neuroprotective or neurotoxic effects depending on their microenvironment. When activated, some microglia release reactive oxygen species (ROS), inducible nitric oxide synthase (iNOS), and cytokines [129]. These oxidative species and cytokines interact with dopaminergic neurones to regulate cell fate during stress [129].

View this table:
  • View inline
  • View popup
Table 2 Viral induced molecular/cellular changes related to PD pathology

Astrocytes and microglia participate in the defense against viral spread throughout the CNS [154]. Although HSV-I may find a safe haven in sensory neurones, replication in these neurones for reactivation may alert neighboring astrocytes. These cells recognize extracellular dsRNA since they can express cell surface TLR3 [155]. Indeed, previous studies have found astrocytes to be reactive to a synthetic mimetic of dsRNA, albeit with conflicting conclusions [155–160]. One study found synthetic dsRNA to produce an anti-inflammatory response in astrocytes [156], while others found a pro-inflammatory response [157,160]. The reasons for these differences may be due to astrocyte source (fetal or adult). Overall, synthetic dsRNA treatment in human astrocytes in vitro was found to cause increases in IFNs, IL-6, and a down-regulation in connexin 43 (a crucial protein for intercellular gap junctions between astrocytes and maintaining BBB integrity) [157,160,161]. Interestingly, a rat study also found synthetic dsRNA to attenuate astrocytic l-glutamate uptake by inhibiting EAAT1/GLAST transporter gene transcription [162]. Studies examining HSV-I infection in the mouse CNS found increased inflammation and ROS [163,164]. These studies suggest viral infection and replication in neurones near astrocytes could cause an inflammatory response and disrupt healthy astrocyte function, possibly leading to neuronal signaling dysfunction and cell death.

Of relevance to HSV-I and glia activity, a study describing a mouse model of HSE found lytic genes (ICP0 and ICP27) to sustain their expression long into ‘latency’ within the brain ependymal after HSE recovery [132]. This HSV-I gene expression profile differs from its life in the TG and was associated with a loss of effector T-cell function and an increase in microglia in the region. Although most humans infected with HSV-I never experience an episode of HSE during their lifetime, the present study not only further demonstrates that not all cell types respond in the same way to HSV-I, but that HSV-I can infect regions of the CNS without lethal consequences.

Synaptic dysfunction

Previous models of PD have suggested that synaptic dysfunction (such as alterations to long-term potentiation/depression, changes in synaptic proteins, and N-methyl-d-aspartate receptor (NMDAR) subunit composition) in nigrostriatal and corticostriatal pathways could be responsible for the physical manifestations of DA loss in the SN [165–167]. Post-mortem studies have found decreases in glutamatergic synapses and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) GluR1 in the striatal regions of PD patients [168,150]. Also, human-induced pluripotent stem cell derived neurones from familial PD patients demonstrated reduced synaptic connectivity and hindered neurite outgrowth [151]. Although more research needs to be conducted to better understand synaptic dysfunction in PD, HSV-I and influenza A associated modifications to normal synaptic function are worth review (see Table 2).

Influenza A infection has been found to disrupt synaptic activity through modulation of host gene expression and interaction with synaptic related proteins. Pandemic and seasonal influenza A infections were examined for their modulation of genes in the CNS [169]. Pandemic influenza strains were associated with down-regulation of ‘neuron projection,’ ‘synapse assembly,’ and ‘calcium channel activity’ related genes [169]. Genes that were down-regulated compared with the seasonal flu strain included glycoprotein M6A, protocadherin α-subfamily C2, and cAMP-regulated phosphoprotein. Influenza A NS1 and nucleoprotein (NP) were also found to modify the host synapse. The influenza A NP was found to localize within dendritic spine-like structures of hippocampal neurones, resulting in reduced spontaneous excitatory synaptic frequency and decreased amplitude of excitatory post-synaptic currents [153]. Also in hippocampal neurones, the post-synaptic density protein-95 (PSD-95)/discs-large/ZO-1 (PDZ) motif of the C-terminus of H5N1 influenza A NS1 (not H1N1 influenza A NS1) was found to bind to PSD-95 [148]. NS1 binding to PSD-95 was suggested to prevent normal post-synaptic processes.

Although there is no evidence of direct inhibition of synaptic proteins, HSV-I infection is associated with changes in the host synapse. HSE patients are often found to have NMDAR antibodies, with a reduction in NMDAR and synapsin protein in murine hippocampal neurones after treatment with HSE patient serum [146]. In an animal model, HSV-I infection of murine cortical neurones resulted in reduction in synapsin-1 and synaptophysin proteins, and disrupted synaptic transmission [147]. Although synaptic dysfunction in PD may be a result of other features of PD pathology (such as α-synuclein aggregation or DA striatal denervation), it is worth noting viral induced changes in synaptic function. HSV-I or influenza A infection may exacerbate already stressed synaptic connections or weaken synaptic activity before other PD pathological features have fully manifested.

Autophagy

The autophagy process is fundamental for cellular homeostasis. Briefly, unwanted components (misfolded proteins, foreign structures, dysfunctional proteins etc.) are engulfed in double-membraned vesicles (autophagosomes) for digestion and substrate recycling [170]. Autophagy pathways have been suggested to be very important for amounting an antiviral defense in non-replicating cells [171]. Epithelial cells infected with HSV-I can produce pro-inflammatory cytokines and undergo cell death to prevent viral spread without permanent tissue damage because they can be replaced afterward. Non-replicating cells, such as neurones, may be more reliant on autophagy processes to limit viral replication and viral spread without undergoing cell death [172]. Similar to IFN signaling evasion, HSV-I and influenza A proteins have evolved ways to disrupt autophagy events to prevent clearance of viral components from host cells during latency and replication.

Previous studies have identified ICP34.5 as a crucial HSV-I protein for inhibiting autophagic degradation of virion structures [173,139]. Multiple HSV-I and influenza A proteins are able to disrupt autophagy. HSV-I ICP34.5 is able to indirectly inhibit protein kinase RNA-activated (PKR), while HSV-I US11 directly binds to PKR to prevent activation [174–176]. Influenza A NS1 and NP also inhibit PKR [142]. This PKR activation inhibition prevents PKR-mediated autophagy activation [139,142]. Also, HSV-I ICP34.5 has been found to bind directly to Beclin-1 [140]. Beclin-1 binds with other autophagy components to promote the formation of autophagosomes [141]. The amino acid region 68–87 of ICP34.5 binds to Beclin-1, leaving the section that functions to inhibit PKR signaling to remain open [140]. HSV-I ICP34.5 inhibition of autophagy through Beclin-1 binding also prevents antigen presentation and cluster of differentiation 4 (CD4+) T-cell response [177]. Further investigation into the consequences of ICP34.5-mediated autophagy disruption needs to be done to understand the effects on host neurone homeostasis beyond increased neurovirulence of HSV-I.

Viral mediated autophagy disruption or suppression could lead to a decrease in clearance of misfolded/aggregated proteins. Studies examining post-mortem AD brains found HSV-I DNA to be associated with amyloid-β plaques [70,22,178]. Although a majority of HSV-I DNA positive CNS neurones were found to have amyloid-β plaques, there was no correlation between amyloid-β plaque containing neurones and presence of HSV-I DNA [70]. These findings suggest that HSV-I infection may cause an increase in amyloid protein aggregation. Further investigation should be conducted to determine if there may also be an association between HSV-I DNA positive neurones and α-synuclein aggregation. A study by Santana et al. [179] found HSV-I infection in neuronal cell cultures to cause an increase in amyloid-β aggregation accumulation, along with an increase in microtubule-associated protein 1A/1B-light chain (LC3-II). This study further supports the theory that HSV-I may contribute to amyloid protein aggregation, but does not refute the possibility that this is related to HSV-I mediated autophagy disruption since ICP34.5 disrupts autophagy through Beclin-1 binding, not LC3-II. Also, the lack of correlation between amyloid-β plaque containing neurones and HSV-I DNA positivity may be due to cross-seeding. HSV-I may cause autophagy disruption in innervating neurones (possibly latent sensory neurones), leading to amyloid fibril accumulations that may have the capability of spreading to other non-HSV-I DNA positive neurones. These protein aggregates may then be transported to innervating neurones or be exocytosed for extracellular cross-seeding. In general, autophagy disruption has been previously found to cause an increase in neurodegeneration, presynaptic α-synuclein accumulation, neuronal inclusions, and dopaminergic axon and dendritic degeneration [137,180].

Conclusion

The purpose of this review was to demonstrate the need to revisit the association between viral infections and PD. It is clear that parallels can be drawn between viral-induced changes in the CNS (ranging from chronic inflammation to synaptic dysfunction) and PD pathology (Figure 1). Further investigation of viral infections (specifically HSV-I and influenza A) should be conducted to determine if intervention can suppress the long-term consequences in the CNS and possibly mitigate the association between viral infections and incidence of PD.

Figure 1
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 1 HSV-I and Influenza A viral infections may lead to PD-like pathology

HSV-I and influenza A viral infections have the potential to cause molecular and cellular changes that can alter healthy neuron function within the CNS. Viral transcripts/proteins due to HSV-I/influenza A infection may cause inflammation, autophagy disruption, and synapse dysfunction, possibly contributing to a PD-like pathology.

Competing interests

The authors declare that there are no competing interests associated with the manuscript.

Abbreviations: AD, Alzheimer’s disease; BBB, blood–brain barrier; CNS, central nervous system; DA, dopamine; EL, encephalitis lethargica; HCV, hepatitis C virus; HSE, herpes simplex encephalitis; HSV, herpes simplex virus; IFN, interferon; IL-6, interleukin-6; iPD, idiopathic Parkinson’s disease; IRF, IFN regulatory factor; LAT, latency-associated transcript; LC3-II, microtubule-associated protein 1A/1B-light chain 3; NF-κB, nuclear factor κ-light-chain-enhancer of activated B cell; NMDAR, N-methyl-d-aspartate receptor; NP, nucleoprotein; NS1, non-structural protein 1; OS, oxidative stress; PAMP, pathogen-associated molecular pattern; PD, Parkinson’s disease; PKR, protein kinase R; PRR, pathogen-recognition receptor; PSD-95, post-synaptic density protein-95; ROS, reactive oxygen species; SN, substantia nigra pars compacta; TG, trigeminal ganglia; TLR, toll-like receptor

  • Received January 15, 2018.
  • Revision received March 6, 2018.
  • Accepted March 19, 2018.
  • © 2018 The Author(s).
http://creativecommons.org/licenses/by/4.0/

This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).

References

  1. ↵
    1. Tanner C.M.,
    2. Goldman S.M.
    (1996) Epidemiology of Parkinson’s disease. Neurol. Clin. 14, 317–335 doi:10.1016/S0733-8619(05)70259-0 pmid:8827174
    OpenUrlCrossRefPubMedWeb of Science
  2. ↵
    1. Hoehn M.M.,
    2. Yahr M.D.
    (1967) Parkinsonism onset, progression, and mortality. Neurology 17, 427 doi:10.1212/WNL.17.5.427 pmid:6067254
    OpenUrlCrossRefPubMed
  3. ↵
    1. Martinez-Martin P.,
    2. Chaudhuri K.R.,
    3. Rojo-Abuin J.M.,
    4. Rodriguez-Blazquez C.,
    5. Alvarez-Sanchez M.,
    6. Arakaki T.,
    (2015) Assessing the non-motor symptoms of Parkinson’s disease: MDS-UPDRS and NMS Scale. Eur. J. Neurol. 22, 37–43 doi:10.1111/ene.12165 pmid:23607783
    OpenUrlCrossRefPubMed
  4. ↵
    1. Pfeiffer R.F.
    (2016) Non-motor symptoms in Parkinson’s disease. Parkinsonism Relat. Disord. 22 (Suppl. 1), S119–S122 doi:10.1016/j.parkreldis.2015.09.004
    OpenUrlCrossRefPubMed
  5. ↵
    1. Braak H.,
    2. Del Tredici K.,
    3. Rüb U.,
    4. De Vos R.A.,
    5. Steur E.N.J.,
    6. Braak E.
    (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24, 197–211 doi:10.1016/S0197-4580(02)00065-9 pmid:12498954
    OpenUrlCrossRefPubMedWeb of Science
  6. ↵
    1. Klein C.,
    2. Westenberger A.
    (2012) Genetics of Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2, a008888 doi:10.1101/cshperspect.a008888
    OpenUrlAbstract/FREE Full Text
  7. ↵
    1. Polymeropoulos M.H.,
    2. Lavedan C.,
    3. Leroy E.,
    4. Ide S.E.,
    5. Dehejia A.,
    6. Dutra A.,
    (1997) Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 276, 2045–2047 doi:10.1126/science.276.5321.2045 pmid:9197268
    OpenUrlAbstract/FREE Full Text
  8. ↵
    1. Zarranz J.J.,
    2. Alegre J.,
    3. Gómez‐Esteban J.C.,
    4. Lezcano E.,
    5. Ros R.,
    6. Ampuero I.,
    (2004) The new mutation, E46K, of α‐synuclein causes parkinson and Lewy body dementia. Ann. Neurol. 55, 164–173 doi:10.1002/ana.10795 pmid:14755719
    OpenUrlCrossRefPubMedWeb of Science
  9. ↵
    1. Chung K.K.,
    2. Zhang Y.,
    3. Lim K.L.,
    4. Tanaka Y.,
    5. Huang H.,
    6. Gao J.,
    (2001) Parkin ubiquitinates the α-synuclein–interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat. Med. 7, 1144–1150 doi:10.1038/nm1001-1144 pmid:11590439
    OpenUrlCrossRefPubMedWeb of Science
  10. ↵
    1. Lynch-Day M.A.,
    2. Mao K.,
    3. Wang K.,
    4. Zhao M.,
    5. Klionsky D.J.
    (2012) The role of autophagy in Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2, a009357 doi:10.1101/cshperspect.a009357
    OpenUrlAbstract/FREE Full Text
  11. ↵
    1. Taylor J.M.,
    2. Main B.S.,
    3. Crack P.J.
    (2013) Neuroinflammation and oxidative stress: co-conspirators in the pathology of Parkinson’s disease. Neurochem. Int. 62, 803–819 doi:10.1016/j.neuint.2012.12.016 pmid:23291248
    OpenUrlCrossRefPubMed
  12. ↵
    1. Lai B.,
    2. Marion S.,
    3. Teschke K.,
    4. Tsui J.
    (2002) Occupational and environmental risk factors for Parkinson’s disease. Parkinsonism Relat. Disord. 8, 297–309 doi:10.1016/S1353-8020(01)00054-2
    OpenUrlCrossRefPubMedWeb of Science
  13. ↵
    1. Liou H.,
    2. Tsai M.,
    3. Chen C.,
    4. Jeng J.,
    5. Chang Y.,
    6. Chen S.,
    (1997) Environmental risk factors and Parkinson’s disease: a case‐control study in Taiwan. Neurology 48, 1583–1588 doi:10.1212/WNL.48.6.1583 pmid:9191770
    OpenUrlAbstract/FREE Full Text
  14. ↵
    1. Seidler A.,
    2. Hellenbrand W.,
    3. Robra B.-P.,
    4. Vieregge P.,
    5. Nischan P.,
    6. Joerg J.,
    (1996) Possible environmental, occupational, and other etiologic factors for Parkinson’s disease A case‐control study in Germany. Neurology 46, 1275 doi:10.1212/WNL.46.5.1275 pmid:8628466
    OpenUrlAbstract/FREE Full Text
  15. ↵
    1. Breckenridge C.B.,
    2. Berry C.,
    3. Chang E.T.,
    4. Sielken R.L. Jr.,
    5. Mandel J.S.
    (2016) Association between Parkinson’s disease and cigarette smoking, rural living, well-water consumption, farming and pesticide use: systematic review and meta-analysis. PLoS ONE 11, e0151841 doi:10.1371/journal.pone.0151841 pmid:27055126
    OpenUrlCrossRefPubMed
  16. ↵
    1. Van Maele-Fabry G.,
    2. Hoet P.,
    3. Vilain F.,
    4. Lison D.
    (2012) Occupational exposure to pesticides and Parkinson’s disease: a systematic review and meta-analysis of cohort studies. Environ. Int. 46, 30–43 doi:10.1016/j.envint.2012.05.004 pmid:22698719
    OpenUrlCrossRefPubMedWeb of Science
  17. ↵
    1. Itzhaki R.F.,
    2. Lathe R.,
    3. Balin B.J.,
    4. Ball M.J.,
    5. Bearer E.L.,
    6. Braak H.,
    (2016) Microbes and Alzheimer’s disease. J. Alzheimers Dis. 51, 979 doi:10.3233/JAD-160152
    OpenUrlCrossRefPubMed
  18. ↵
    1. Balin B.J.,
    2. Gérard H.C.,
    3. Arking E.J.,
    4. Appelt D.M.,
    5. Branigan P.J.,
    6. Abrams J.T.,
    (1998) Identification and localization of Chlamydia pneumoniae in the Alzheimer’s brain. Med. Microbiol. Immunol. 187, 23–42, pmid:9749980
    OpenUrlCrossRefPubMed
  19. ↵
    1. Letenneur L.,
    2. Pérès K.,
    3. Fleury H.,
    4. Garrigue I.,
    5. Barberger-Gateau P.,
    6. Helmer C.,
    (2008) Seropositivity to herpes simplex virus antibodies and risk of Alzheimer’s disease: a population-based cohort study PloS One 11, e3637 doi:10.1371/journal.pone.0003637 pmid:18982063
    OpenUrlCrossRefPubMed
  20. ↵
    1. Lövheim H.,
    2. Gilthorpe J.,
    3. Adolfsson R.,
    4. Nilsson L.G.,
    5. Elgh F.
    (2015) Reactivated herpes simplex infection increases the risk of Alzheimer’s disease Alzheimers Dement. 11, 593–599 doi:10.1016/j.jalz.2014.04.522 pmid:25043910
    OpenUrlCrossRefPubMed
  21. ↵
    1. Miklossy J.,
    2. Khalili K.,
    3. Gern L.,
    4. Ericson R.L,
    5. Darekar P.,
    6. Bolle L.,
    (2004) Borrelia burgdorferi persists in the brain in chronic lyme neuroborreliosis and may be associated with Alzheimer disease J. Alzheimers Dis. 6, 639–649 pmid:15665404
    OpenUrlPubMedWeb of Science
  22. ↵
    1. Wozniak M.A.,
    2. Frost A.L.,
    3. Itzhaki R.F.
    (2009) Alzheimer’s disease-specific tau phosphorylation is induced by herpes simplex virus type 1. J. Alzheimers Dis. 16, 341–350 doi:10.3233/JAD-2009-0963
    OpenUrlCrossRefPubMedWeb of Science
  23. ↵
    1. Von Economo C.
    (1931) Encephalitis Lethargica: Its Sequelae and Treatment, Oxford University Press
  24. ↵
    1. Neal J.B.,
    2. Bentley I.A.
    (1932) Treatment of epidemic encephalitis: a review of the work of the Matheson Commission. Arch. Neurol. Psychiatry 28, 897–907 doi:10.1001/archneurpsyc.1932.02240040142010
    OpenUrlCrossRef
  25. ↵
    1. Ravenholt R.,
    2. Foege W.
    (1982) 1918 influenza, encephalitis lethargica, parkinsonism. Lancet North Am. Ed. 320, 860–864 doi:10.1016/S0140-6736(82)90820-0
    OpenUrlCrossRef
  26. ↵
    1. Lo K.,
    2. Geddes J.,
    3. Daniels R.,
    4. Oxford J.
    (2003) Lack of detection of influenza genes in archived formalin-fixed, paraffin wax-embedded brain samples of encephalitis lethargica patients from 1916 to 1920. Virchows Arch. 442, 591–596 pmid:12695912
    OpenUrlCrossRefPubMedWeb of Science
  27. ↵
    1. McCall S.,
    2. Henry J.M.,
    3. Reid A.H.,
    4. Taubenberger J.K.
    (2001) Influenza RNA not detected in archival brain tissues from acute encephalitis lethargica cases or in postencephalitic Parkinson cases. J. Neuropathol. Exp. Neurol. 60, 696–704 doi:10.1093/jnen/60.7.696 pmid:11444798
    OpenUrlCrossRefPubMed
  28. ↵
    1. Taubenberger J.K.,
    2. Reid A.H.,
    3. Krafft A.E.,
    4. Bijwaard K.E.,
    5. Fanning T.G.
    (1997) Initial genetic characterization of the 1918 “Spanish” influenza virus. Science 275, 1793–1796 doi:10.1126/science.275.5307.1793 pmid:9065404
    OpenUrlAbstract/FREE Full Text
  29. ↵
    1. Reid A.H.,
    2. Fanning T.G.,
    3. Hultin J.V.,
    4. Taubenberger J.K.
    (1999) Origin and evolution of the 1918 “Spanish” influenza virus hemagglutinin gene. Proc. Natl. Acad. Sci. U.S.A. 96, 1651–1656 doi:10.1073/pnas.96.4.1651
    OpenUrlAbstract/FREE Full Text
  30. ↵
    1. Reid A.H.,
    2. Fanning T.G.,
    3. Janczewski T.A.,
    4. Taubenberger J.K.
    (2000) Characterization of the 1918 “Spanish” influenza virus neuraminidase gene. Proc. Natl. Acad. Sci. U.S.A. 97, 6785–6790 doi:10.1073/pnas.100140097
    OpenUrlAbstract/FREE Full Text
  31. ↵
    1. Anderson L.,
    2. Vilensky J.,
    3. Duvoisin R.
    (2009) Neuropathology of acute phase encephalitis lethargica: a review of cases from the epidemic period. Neuropathol. Appl. Neurobiol. 35, 462–472 doi:10.1111/j.1365-2990.2009.01024.x pmid:19490429
    OpenUrlCrossRefPubMed
  32. ↵
    1. Dale R.C.,
    2. Church A.J.,
    3. Surtees R.A.,
    4. Lees A.J.,
    5. Adcock J.E.,
    6. Harding B.,
    (2004) Encephalitis lethargica syndrome: 20 new cases and evidence of basal ganglia autoimmunity. Brain 127, 21–33 doi:10.1093/brain/awh008 pmid:14570817
    OpenUrlCrossRefPubMedWeb of Science
  33. ↵
    1. Dale R.C.,
    2. Irani S.R.,
    3. Brilot F.,
    4. Pillai S.,
    5. Webster R.,
    6. Gill D.,
    (2009) N‐methyl‐D‐aspartate receptor antibodies in pediatric dyskinetic encephalitis lethargica. Ann. Neurol. 66, 704–709 doi:10.1002/ana.21807 pmid:19938173
    OpenUrlCrossRefPubMedWeb of Science
  34. ↵
    1. Lopez-Alberola R.,
    2. Georgiou M.,
    3. Sfakianakis G.N.,
    4. Singer C.,
    5. Papapetropoulos S.
    (2009) Contemporary encephalitis lethargica: phenotype, laboratory findings and treatment outcomes. J. Neurol. 256, 396–404 doi:10.1007/s00415-009-0074-4 pmid:19412724
    OpenUrlCrossRefPubMed
  35. ↵
    1. Rail D.,
    2. Scholtz C.,
    3. Swash M.
    (1981) Post-encephalitic parkinsonism: current experience. J. Neurol. Neurosurg. Psychiatry 44, 670–676 doi:10.1136/jnnp.44.8.670
    OpenUrlAbstract/FREE Full Text
  36. ↵
    1. Singer H.S.,
    2. Hong J.J.,
    3. Yoon D.Y.,
    4. Williams P.N.
    (2005) Serum autoantibodies do not differentiate PANDAS and Tourette syndrome from controls. Neurology 65, 1701–1707 doi:10.1212/01.wnl.0000183223.69946.f1 pmid:16207842
    OpenUrlAbstract/FREE Full Text
  37. ↵
    1. Vincent A.,
    2. Buckley C.,
    3. Schott J.M.,
    4. Baker I.,
    5. Dewar B.K.,
    6. Detert N.,
    (2004) Potassium channel antibody‐associated encephalopathy: a potentially immunotherapy‐responsive form of limbic encephalitis. Brain 127, 701–712 doi:10.1093/brain/awh077 pmid:14960497
    OpenUrlCrossRefPubMedWeb of Science
  38. ↵
    1. de Jong M.D.,
    2. Cam B.V.,
    3. Qui P.T.,
    4. Hien V.M.,
    5. Thanh T.T.,
    6. Hue N.B.,
    (2005) Fatal avian influenza A (H5N1) in a child presenting with diarrhea followed by coma. N. Engl. J. Med. 352, 686–691 doi:10.1056/NEJMoa044307 pmid:15716562
    OpenUrlCrossRefPubMedWeb of Science
  39. ↵
    1. Jang H.,
    2. Boltz D.,
    3. Sturm-Ramirez K.,
    4. Shepherd K.R.,
    5. Jiao Y.,
    6. Webster R.,
    (2009) Highly pathogenic H5N1 influenza virus can enter the central nervous system and induce neuroinflammation and neurodegeneration. Proc. Natl. Acad. Sci. U.S.A. 106, 14063–14068 doi:10.1073/pnas.0900096106
    OpenUrlAbstract/FREE Full Text
  40. ↵
    1. Mattos J.P.d.,
    2. Rosso A.L.Z.d.,
    3. Corrêa R.B.,
    4. Novis S.A.
    (2002) Movement disorders in 28 HIV-infected patients. Arq. Neuropsiquiatr. 60, 525–530 doi:10.1590/S0004-282X2002000400002 pmid:12244384
    OpenUrlCrossRefPubMed
  41. ↵
    1. Poser C.M.,
    2. Huntley C.J.,
    3. Poland J.D.
    (1969) Para‐encephalitic parkinsonism. Acta Neurol. Scand. 45, 199–215 doi:10.1111/j.1600-0404.1969.tb01232.x pmid:5800856
    OpenUrlCrossRefPubMedWeb of Science
  42. ↵
    1. Pranzatelli M.R.,
    2. Mott S.H.,
    3. Pavlakis S.G.,
    4. Conry J.A.,
    5. Tate E.D.
    (1994) Clinical spectrum of secondary parkinsonism in childhood: a reversible disorder. Pediatr. Neurol. 10, 131–140 doi:10.1016/0887-8994(94)90045-0 pmid:8024661
    OpenUrlCrossRefPubMedWeb of Science
  43. ↵
    1. Tse W.,
    2. Cersosimo M.G.,
    3. Gracies J.-M.,
    4. Morgello S.,
    5. Olanow C.W.,
    6. Koller W.
    (2004) Movement disorders and AIDS: a review. Parkinsonism Relat. Disord. 10, 323–334 doi:10.1016/j.parkreldis.2004.03.001
    OpenUrlCrossRefPubMed
  44. ↵
    1. Walters J.H.
    (1960) Postencephalitic Parkinson syndrome after meningoencephalitis due to coxsackie virus group B, type 2. N. Engl. J. Med. 263, 744–747 doi:10.1056/NEJM196010132631507
    OpenUrlCrossRefWeb of Science
  45. ↵
    1. Elizan T.S.,
    2. Madden D.L.,
    3. Noble G.R.,
    4. Herrmann K.L.,
    5. Gardner J.,
    6. Schwartz J.,
    (1979) Viral antibodies in serum and CSF of Parkinsonian patients and controls. Arch. Neurol. 36, 529–534 doi:10.1001/archneur.1979.00500450023002 pmid:224845
    OpenUrlCrossRefPubMedWeb of Science
  46. ↵
    1. Chen H.H.,
    2. Liu P.F.-C.,
    3. Tsai H.H.,
    4. Yen R.F.,
    5. Liou H.H.
    (2016) Re: Wangensteen et al. of a letter on ‘Hepatitis C virus infection: a risk factor for Parkinson’s disease’. J. Viral Hepat. 23, 560 doi:10.1111/jvh.12521 pmid:26913588
    OpenUrlCrossRefPubMed
  47. ↵
    1. Tsai H.-H.,
    2. Liou H.-H.,
    3. Muo C.-H.,
    4. Lee C.-Z.,
    5. Yen R.-F.,
    6. Kao C.-H.
    (2016) Hepatitis C virus infection as a risk factor for Parkinson disease: a nationwide cohort study. Neurology 86, 840–846 doi:10.1212/WNL.0000000000002307 pmid:26701382
    OpenUrlAbstract/FREE Full Text
  48. ↵
    1. Wu W.Y.Y.,
    2. Kang K.H.,
    3. Chen S.L.S.,
    4. Chiu S.Y.H.,
    5. Yen A.M.F.,
    6. Fann J.C.Y.,
    (2015) Hepatitis C virus infection: a risk factor for Parkinson’s disease. J. Viral Hepatol. 22, 784–791 doi:10.1111/jvh.12392 pmid:25608223
    OpenUrlCrossRefPubMed
  49. ↵
    1. Marttila R.,
    2. Arstila P.,
    3. Nikoskelainen J.,
    4. Halonen P.,
    5. Rinne U.
    (1977) Viral antibodies in the sera from patients with Parkinson disease. Eur. Neurol. 15, 25–33 doi:10.1159/000114785 pmid:323017
    OpenUrlCrossRefPubMedWeb of Science
  50. ↵
    1. Marttila R.J.,
    2. Rinne U.K.
    (1978) Herpes simplex virus antibodies in patients with Parkinson’s disease. J. Neurol. Sci. 35, 375–379 doi:10.1016/0022-510X(78)90017-5 pmid:632840
    OpenUrlCrossRefPubMedWeb of Science
  51. ↵
    1. Marttila R.J.,
    2. Rinne U.K.,
    3. Halonen P.,
    4. Madden D.L.,
    5. Sever J.L.
    (1981) Herpes viruses and Parkinsonism: herpes simplex virus types 1 and 2, and cytomegalovirus antibodies in serum and CSF. Arch. Neurol. 38, 19–21 doi:10.1001/archneur.1981.00510010045007 pmid:6257211
    OpenUrlCrossRefPubMedWeb of Science
  52. ↵
    1. Harris M.A.,
    2. Tsui J.K.,
    3. Marion S.A.,
    4. Shen H.,
    5. Teschke K.
    (2012) Association of Parkinson’s disease with infections and occupational exposure to possible vectors. Mov. Disord. 27, 1111–1117 doi:10.1002/mds.25077 pmid:22753266
    OpenUrlCrossRefPubMed
  53. ↵
    1. Vlajinac H.,
    2. Dzoljic E.,
    3. Maksimovic J.,
    4. Marinkovic J.,
    5. Sipetic S.,
    6. Kostic V.
    (2013) Infections as a risk factor for Parkinson’s disease: a case–control study. Int. J. Neurosci. 123, 329–332 doi:10.3109/00207454.2012.760560 pmid:23270425
    OpenUrlCrossRefPubMed
  54. ↵
    1. Bu X.L.,
    2. Yao X.Q.,
    3. Jiao S.S.,
    4. Zeng F.,
    5. Liu Y.H.,
    6. Xiang Y.,
    (2015) A study on the association between infectious burden and Alzheimer’s disease. Eur. J. Neurol. 22, 1519–1525 doi:10.1111/ene.12477 pmid:24910016
    OpenUrlCrossRefPubMed
    1. Marttila R.J.,
    2. Rinne U.K.,
    3. Tiilikainen A.
    (1982) Virus antibodies in Parkinson’s disease: herpes simplex and measles virus antibodies in serum and CSF and their relation to HLA types. J. Neurol. Sci. 54, 227–238 doi:10.1016/0022-510X(82)90184-8 pmid:6284883
    OpenUrlCrossRefPubMedWeb of Science
    1. Fazzini E.,
    2. Fleming J.,
    3. Fahn S.
    (1992) Cerebrospinal fluid antibodies to coronavirus in patients with Parkinson’s disease. Mov. Disord. 7, 153–158 doi:10.1002/mds.870070210 pmid:1316552
    OpenUrlCrossRefPubMed
  55. ↵
    1. Samji T.
    (2009) Influenza A: understanding the viral life cycle. Yale J. Biol. Med. 82, 153–159 pmid:20027280
    OpenUrlPubMed
  56. ↵
    1. Kumar S.P.,
    2. Chandy M.L.,
    3. Shanavas M.,
    4. Khan S.,
    5. Suresh K.
    (2016) Pathogenesis and life cycle of herpes simplex virus infection-stages of primary, latency and recurrence. J. Oral Maxillofac. Surg. Med. Pathol. 28, 350–353 doi:10.1016/j.ajoms.2016.01.006
    OpenUrlCrossRef
  57. ↵
    1. Marfurt C.F.,
    2. Rajchert D.M.
    (1991) Trigeminal primary afferent projections to “non‐trigeminal” areas of the rat central nervous system. J. Comp. Neurol. 303, 489–511 doi:10.1002/cne.903030313 pmid:1706735
    OpenUrlCrossRefPubMedWeb of Science
  58. ↵
    1. Miller K.D.,
    2. Schnell M.J.,
    3. Rall G.F.
    (2016) Keeping it in check: chronic viral infection and antiviral immunity in the brain. Nat. Rev. Neurosci. 17, 766–776 doi:10.1038/nrn.2016.140 pmid:27811921
    OpenUrlCrossRefPubMed
  59. ↵
    1. Kuiken T.,
    2. Taubenberger J.K.
    (2008) Pathology of human influenza revisited. Vaccine 26, D59–D66 doi:10.1016/j.vaccine.2008.07.025 pmid:19230162
    OpenUrlCrossRefPubMedWeb of Science
  60. ↵
    1. Matsuda K.,
    2. Shibata T.,
    3. Sakoda Y.,
    4. Kida H.,
    5. Kimura T.,
    6. Ochiai K.,
    (2005) In vitro demonstration of neural transmission of avian influenza A virus. J. Gen. Virol. 86, 1131–1139 doi:10.1099/vir.0.80704-0 pmid:15784907
    OpenUrlCrossRefPubMedWeb of Science
  61. ↵
    1. van Riel D.,
    2. Verdijk R.,
    3. Kuiken T.
    (2015) The olfactory nerve: a shortcut for influenza and other viral diseases into the central nervous system. J. Pathol. 235, 277–287 doi:10.1002/path.4461 pmid:25294743
    OpenUrlCrossRefPubMed
  62. ↵
    1. Esiri M.M.
    (1982) Herpes simplex encephalitis: an immunohistological study of the distribution of viral antigen within the brain. J. Neurol. Sci. 54, 209–226 doi:10.1016/0022-510X(82)90183-6 pmid:6284882
    OpenUrlCrossRefPubMedWeb of Science
  63. ↵
    1. Shoji H.,
    2. Koga M.,
    3. Kusuhara T.,
    4. Kaji M.,
    5. Ayabe M.,
    6. Hino H.,
    (1994) Differentiation of herpes simplex virus 1 and 2 in cerebrospinal fluid of patients with HSV encephalitis and meningitis by stringent hybridization of PCR-amplified DNAs. J. Neurol. 241, 526–530 doi:10.1007/BF00873514 pmid:7799000
    OpenUrlCrossRefPubMedWeb of Science
  64. ↵
    1. Hemling N.,
    2. Röyttä M.,
    3. Rinne J.,
    4. Pöllänen P.,
    5. Broberg E.,
    6. Tapio V.,
    (2003) Herpes viruses in brains in Alzheimer’s and Parkinson’s diseases. Ann. Neurol. 54, 267–271 doi:10.1002/ana.10662 pmid:12891684
    OpenUrlCrossRefPubMedWeb of Science
  65. ↵
    1. Wetmur J.G.,
    2. Schwartz J.,
    3. Elizan T.S.
    (1979) Nucleic acid homology studies of viral nucleic acids in idiopathic Parkinson’s disease. Arch. Neurol. 36, 462–464 doi:10.1001/archneur.1979.00500440032004 pmid:228643
    OpenUrlCrossRefPubMedWeb of Science
  66. ↵
    1. Fraser N.W.,
    2. Lawrence W.C.,
    3. Wroblewska Z.,
    4. Gilden D.H.,
    5. Koprowski H.
    (1981) Herpes simplex type 1 DNA in human brain tissue. Proc. Natl. Acad. Sci. U.S.A. 78, 6461–6465 doi:10.1073/pnas.78.10.6461
    OpenUrlAbstract/FREE Full Text
  67. ↵
    1. Gordon L.,
    2. McQuaid S.,
    3. Cosby S.
    (1996) Detection of herpes simplex virus (types 1 and 2) and human herpesvirus 6 DNA in human brain tissue by polymerase chain reaction. Clin. Diagn. Virol. 6, 33–40 doi:10.1016/0928-0197(95)00203-0 pmid:15566888
    OpenUrlCrossRefPubMedWeb of Science
  68. ↵
    1. Olsson J.,
    2. Lövheim H.,
    3. Honkala E.,
    4. Karhunen P.J.,
    5. Elgh F.,
    6. Kok E.H.
    (2016) HSV presence in brains of individuals without dementia: the TASTY brain series. Dis. Models Mech. 9, 1349–1355 doi:10.1242/dmm.026674
    OpenUrlAbstract/FREE Full Text
  69. ↵
    1. Park C.H.,
    2. Ishinaka M.,
    3. Takada A.,
    4. Kida H.,
    5. Kimura T.,
    6. Ochiai K.,
    (2002) The invasion routes of neurovirulent A/Hong Kong/483/97 (H5N1) influenza virus into the central nervous system after respiratory infection in mice. Arch. Virol 147, 1425–1436 doi:10.1007/s00705-001-0750-x pmid:12111416
    OpenUrlCrossRefPubMedWeb of Science
  70. ↵
    1. Reinacher M.,
    2. Bonin J.,
    3. Narayan O.,
    4. Scholtissek C.
    (1983) Pathogenesis of neurovirulent influenza A virus infection in mice. Route of entry of virus into brain determines infection of different populations of cells. Lab. Invest. 49, 686–692 pmid:6656200
    OpenUrlPubMedWeb of Science
  71. ↵
    1. Takahashi M.,
    2. Yamada T.,
    3. Nakajima S.,
    4. Nakajima K.,
    5. Yamamoto T.,
    6. Okada H.
    (1995) The substantia nigra is a major target for neurovirulent influenza A virus. J. Exp. Med. 181, 2161–2169 doi:10.1084/jem.181.6.2161 pmid:7760004
    OpenUrlAbstract/FREE Full Text
  72. ↵
    1. Yamada T.,
    2. Yamanaka I.,
    3. Takahashi M.,
    4. Nakajima S.
    (1996) Invasion of brain by neurovirulent influenza A virus after intranasal inoculation. Parkinsonism Relat. Disord. 2, 187–193 doi:10.1016/S1353-8020(96)00024-7
    OpenUrlCrossRefPubMed
  73. ↵
    1. Jang H.,
    2. Boltz D.,
    3. McClaren J.,
    4. Pani A.K.,
    5. Smeyne M.,
    6. Korff A.,
    (2012) Inflammatory effects of highly pathogenic H5N1 influenza virus infection in the CNS of mice. J. Neurosci. 32, 1545–1559 doi:10.1523/JNEUROSCI.5123-11.2012 pmid:22302798
    OpenUrlAbstract/FREE Full Text
  74. ↵
    1. Jamieson G.A.,
    2. Maitland N.J.,
    3. Wilcock G.K.,
    4. Yates C.M.,
    5. Itzhaki R.F.
    (1992) Herpes simplex virus type 1 DNA is present in specific regions of brain from aged people with and without senile dementia of the Alzheimer type. J. Pathol. 167, 365–368 doi:10.1002/path.1711670403 pmid:1328575
    OpenUrlCrossRefPubMedWeb of Science
  75. ↵
    1. Nicholson K.G.,
    2. Kent J.,
    3. Hammersley V.,
    4. Cancio E.
    (1997) Acute viral infections of upper respiratory tract in elderly people living in the community: comparative, prospective, population based study of disease burden. BMJ 315, 1060–1064 doi:10.1136/bmj.315.7115.1060 pmid:9366736
    OpenUrlAbstract/FREE Full Text
  76. ↵
    1. De Lau L.M.,
    2. Breteler M.M.
    (2006) Epidemiology of Parkinson’s disease. Lancet Neurol. 5, 525–535 doi:10.1016/S1474-4422(06)70471-9
    OpenUrlCrossRefPubMedWeb of Science
  77. ↵
    1. Kleine T.,
    2. Hackler R.,
    3. Zöfel P.
    (1992) Age-related alterations of the blood-brain-barrier (bbb) permeability to protein molecules of different size. Z. Gerontol. 26, 256–259
    OpenUrl
  78. ↵
    1. Valiathan R.,
    2. Ashman M.,
    3. Asthana D.
    (2016) Effects of ageing on the immune system: infants to elderly. Scand. J. Immunol. 83, 255–266 doi:10.1111/sji.12413 pmid:26808160
    OpenUrlCrossRefPubMed
  79. ↵
    1. Levine B.
    (2005) Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 120, 159–162 pmid:15680321
    OpenUrlCrossRefPubMedWeb of Science
  80. ↵
    1. Abbas A.K.,
    2. Lichtman A.H.,
    3. Pillai S.
    (2014) Basic Immunology: Functions and Disorders of the Immune System, Elsevier Health Sciences
  81. ↵
    1. Mosser D.M.,
    2. Edwards J.P.
    (2008) Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 doi:10.1038/nri2448 pmid:19029990
    OpenUrlCrossRefPubMedWeb of Science
  82. ↵
    1. Schroder K.,
    2. Sweet M.J.,
    3. Hume D.A.
    (2006) Signal integration between IFNγ and TLR signalling pathways in macrophages. Immunobiology 211, 511–524 doi:10.1016/j.imbio.2006.05.007 pmid:16920490
    OpenUrlCrossRefPubMedWeb of Science
  83. ↵
    1. Dutton R.,
    2. Bradley L.,
    3. Swain S.
    (1998) T cell memory. Annu. Rev. Immunol. 16, 201–223 doi:10.1146/annurev.immunol.16.1.201 pmid:9597129
    OpenUrlCrossRefPubMedWeb of Science
  84. ↵
    1. Rajewsky K.,
    2. Schittek B.
    (1990) Maintenance of B-cell memory by long-lived cells generated from proliferating precursors. Nature 346, 749 doi:10.1038/346749a0 pmid:2388695
    OpenUrlCrossRefPubMedWeb of Science
  85. ↵
    1. Khanna K.M.,
    2. Bonneau R.H.,
    3. Kinchington P.R.,
    4. Hendricks R.L.
    (2003) Herpes simplex virus-specific memory CD8+ T cells are selectively activated and retained in latently infected sensory ganglia. Immunity 18, 593–603 doi:10.1016/S1074-7613(03)00112-2 pmid:12753737
    OpenUrlCrossRefPubMedWeb of Science
  86. ↵
    1. Leger A.J.S.,
    2. Jeon S.,
    3. Hendricks R.L.
    (2013) Broadening the repertoire of functional herpes simplex virus type 1–specific CD8+ T cells reduces viral reactivation from latency in sensory ganglia. J. Immunol. 191, 2258–2265 doi:10.4049/jimmunol.1300585
    OpenUrlAbstract/FREE Full Text
  87. ↵
    1. Benmohamed L.,
    2. Srivastava R.,
    3. Khan A.A.
    (2016) The herpes simplex virus LAT gene is associated with a broader repertoire of virus-specific exhausted CD8+ T cells retained within the trigeminal ganglia of latently infected HLA transgenic rabbits. J. Immunol. 196, 79.14–79.14
    OpenUrl
  88. ↵
    1. Halford W.P.,
    2. Gebhardt B.M.,
    3. Carr D.J.
    (1996) Persistent cytokine expression in trigeminal ganglion latently infected with herpes simplex virus type 1. J. Immunol. 157, 3542–3549 pmid:8871654
    OpenUrlAbstract
  89. ↵
    1. Theil D.,
    2. Derfuss T.,
    3. Paripovic I.,
    4. Herberger S.,
    5. Meinl E.,
    6. Schueler O.,
    (2003) Latent herpesvirus infection in human trigeminal ganglia causes chronic immune response. Am. J. Pathol. 163, 2179–2184 doi:10.1016/S0002-9440(10)63575-4 pmid:14633592
    OpenUrlCrossRefPubMedWeb of Science
  90. ↵
    1. Perrone L.A.,
    2. Plowden J.K.,
    3. García-Sastre A.,
    4. Katz J.M.,
    5. Tumpey T.M.
    (2008) H5N1 and 1918 pandemic influenza virus infection results in early and excessive infiltration of macrophages and neutrophils in the lungs of mice. PLoS Pathog. 4, e1000115 doi:10.1371/journal.ppat.1000115 pmid:18670648
    OpenUrlCrossRefPubMed
  91. ↵
    1. Saunders J.A.H.,
    2. Estes K.A.,
    3. Kosloski L.M.,
    4. Allen H.E.,
    5. Dempsey K.M.,
    6. Torres-Russotto D.R.,
    (2012) CD4+ regulatory and effector/memory T cell subsets profile motor dysfunction in Parkinson’s disease. J. Neuroimmune Pharmacol. 7, 927–938 doi:10.1007/s11481-012-9402-z
    OpenUrlCrossRefPubMed
  92. ↵
    1. Sulzer D.,
    2. Alcalay R.N.,
    3. Garretti F.,
    4. Cote L.,
    5. Kanter E.,
    6. Agin-Liebes J.,
    (2017) T cells from patients with Parkinson’s disease recognize α-synuclein peptides. Nature 546, 656 doi:10.1038/nature22815 pmid:28636593
    OpenUrlCrossRefPubMed
  93. ↵
    1. Caggiu E.,
    2. Paulus K.,
    3. Arru G.,
    4. Piredda R.,
    5. Sechi G.P.,
    6. Sechi L.A.
    (2016) Humoral cross reactivity between α-synuclein and herpes simplex-1 epitope in Parkinson’s disease, a triggering role in the disease? J. Neuroimmunol. 291, 110–114 doi:10.1016/j.jneuroim.2016.01.007 pmid:26857504
    OpenUrlCrossRefPubMed
  94. ↵
    1. Chang Z.
    (2010) Important aspects of Toll-like receptors, ligands and their signaling pathways. Inflamm. Res. 59, 791–808 doi:10.1007/s00011-010-0208-2 pmid:20593217
    OpenUrlCrossRefPubMed
  95. ↵
    1. Alexopoulou L.,
    2. Holt A.C.,
    3. Medzhitov R.,
    4. Flavell R.A.
    (2001) Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738 doi:10.1038/35099560 pmid:11607032
    OpenUrlCrossRefPubMedWeb of Science
  96. ↵
    1. Matsumoto M.,
    2. Kikkawa S.,
    3. Kohase M.,
    4. Miyake K.,
    5. Seya T.
    (2002) Establishment of a monoclonal antibody against human Toll-like receptor 3 that blocks double-stranded RNA-mediated signaling. Biochem. Biophys. Res. Commun. 293, 1364–1369 doi:10.1016/S0006-291X(02)00380-7 pmid:12054664
    OpenUrlCrossRefPubMedWeb of Science
  97. ↵
    1. O’Neill L.A.,
    2. Golenbock D.,
    3. Bowie A.G.
    (2013) The history of Toll-like receptors - redefining innate immunity. Nat. Rev. Immunol. 13, 453–460 doi:10.1038/nri3446 pmid:23681101
    OpenUrlCrossRefPubMed
  98. ↵
    1. Bonifati V.
    (2012) Autosomal recessive parkinsonism. Parkinsonism Relat. Disord. 18 (Suppl. 1), S4–S6 doi:10.1016/S1353-8020(11)70004-9
    OpenUrlCrossRefPubMed
  99. ↵
    1. Hakimi M.,
    2. Selvanantham T.,
    3. Swinton E.,
    4. Padmore R.F.,
    5. Tong Y.,
    6. Kabbach G.,
    (2011) Parkinson’s disease-linked LRRK2 is expressed in circulating and tissue immune cells and upregulated following recognition of microbial structures. J. Neural Transm. 118, 795–808 doi:10.1007/s00702-011-0653-2
    OpenUrlCrossRefPubMedWeb of Science
  100. ↵
    1. Manzanillo P.S.,
    2. Ayres J.S.,
    3. Watson R.O.,
    4. Collins A.C.,
    5. Souza G.,
    6. Rae C.S.,
    (2013) The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 501, 512 doi:10.1038/nature12566 pmid:24005326
    OpenUrlCrossRefPubMedWeb of Science
  101. ↵
    1. Zimprich A.,
    2. Biskup S.,
    3. Leitner P.,
    4. Lichtner P.,
    5. Farrer M.,
    6. Lincoln S.,
    (2004) Mutations in LRRK2 cause autosomal-dominant Parkinsonism with pleomorphic pathology. Neuron 44, 601–607 doi:10.1016/j.neuron.2004.11.005 pmid:15541309
    OpenUrlCrossRefPubMedWeb of Science
  102. ↵
    1. Satake W.,
    2. Nakabayashi Y.,
    3. Mizuta I.,
    4. Hirota Y.,
    5. Ito C.,
    6. Kubo M.,
    (2009) Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat. Genet. 41, 1303 doi:10.1038/ng.485 pmid:19915576
    OpenUrlCrossRefPubMedWeb of Science
  103. ↵
    1. Guo Y.,
    2. Deng X.,
    3. Zheng W.,
    4. Xu H.,
    5. Song Z.,
    6. Liang H.,
    (2011) HLA rs3129882 variant in Chinese Han patients with late-onset sporadic Parkinson disease. Neurosci. Lett. 501, 185–187 doi:10.1016/j.neulet.2011.05.245 pmid:21791235
    OpenUrlCrossRefPubMed
  104. ↵
    1. Hamza T.H.,
    2. Zabetian C.P.,
    3. Tenesa A.,
    4. Laederach A.,
    5. Montimurro J.,
    6. Yearout D.,
    (2010) Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson’s disease. Nat. Genet. 42, 781–785 doi:10.1038/ng.642 pmid:20711177
    OpenUrlCrossRefPubMedWeb of Science
  105. ↵
    1. Ahmed I.,
    2. Tamouza R.,
    3. Delord M.,
    4. Krishnamoorthy R.,
    5. Tzourio C.,
    6. Mulot C.,
    (2012) Association between Parkinson’s disease and the HLA-DRB1 locus. Mov. Disord. 27, 1104–1110 doi:10.1002/mds.25035 pmid:22807207
    OpenUrlCrossRefPubMed
  106. ↵
    International Parkinson Disease Genomics Consortium (2011) Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet 377, 641–649 doi:10.1016/S0140-6736(10)62345-8 pmid:21292315
    OpenUrlCrossRefPubMedWeb of Science
  107. ↵
    1. Nagatsu T.,
    2. Mogi M.,
    3. Ichinose H.,
    4. Togari A.
    (2000) Cytokines in Parkinson’s disease. J. Neural Transm. Suppl. 58, 143–152
    OpenUrlPubMed
  108. ↵
    1. Mogi M.,
    2. Harada M.,
    3. Narabayashi H.,
    4. Inagaki H.,
    5. Minami M.,
    6. Nagatsu T.
    (1996) Interleukin (IL)-1β, IL-2, IL-4, IL-6 and transforming growth factor-α levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson’s disease. Neurosci. Lett. 211, 13–16 doi:10.1016/0304-3940(96)12706-3 pmid:8809836
    OpenUrlCrossRefPubMedWeb of Science
  109. ↵
    1. Reale M.,
    2. Iarlori C.,
    3. Thomas A.,
    4. Gambi D.,
    5. Perfetti B.,
    6. Di Nicola M.,
    (2009) Peripheral cytokines profile in Parkinson’s disease. Brain Behav. Immun. 23, 55–63 doi:10.1016/j.bbi.2008.07.003 pmid:18678243
    OpenUrlCrossRefPubMed
  110. ↵
    1. Depino A.M.,
    2. Earl C.,
    3. Kaczmarczyk E.,
    4. Ferrari C.,
    5. Besedovsky H.,
    6. Del Rey A.,
    (2003) Microglial activation with atypical proinflammatory cytokine expression in a rat model of Parkinson’s disease. Eur. J. Neurosci. 18, 2731–2742 doi:10.1111/j.1460-9568.2003.03014.x pmid:14656322
    OpenUrlCrossRefPubMedWeb of Science
  111. ↵
    1. Koprich J.B.,
    2. Reske-Nielsen C.,
    3. Mithal P.,
    4. Isacson O.
    (2008) Neuroinflammation mediated by IL-1β increases susceptibility of dopamine neurons to degeneration in an animal model of Parkinson’s disease. J. Neuroinflammation 5, 8 doi:10.1186/1742-2094-5-8 pmid:18304357
    OpenUrlCrossRefPubMed
  112. ↵
    1. McCabe K.,
    2. Concannon R.M.,
    3. McKernan D.P.,
    4. Dowd E.
    (2017) Time-course of striatal Toll-like receptor expression in neurotoxic, environmental and inflammatory rat models of Parkinson’s disease. J. Neuroimmunol. 310, 103–106 doi:10.1016/j.jneuroim.2017.07.007 pmid:28778432
    OpenUrlCrossRefPubMed
  113. ↵
    1. Antrobus R.,
    2. Boutell C.
    (2008) Identification of a novel higher molecular weight isoform of USP7/HAUSP that interacts with the Herpes simplex virus type-1 immediate early protein ICP0. Virus Res. 137, 64–71 doi:10.1016/j.virusres.2008.05.017 pmid:18590780
    OpenUrlCrossRefPubMed
  114. ↵
    1. Lin R.,
    2. Noyce R.S.,
    3. Collins S.E.,
    4. Everett R.D.,
    5. Mossman K.L.
    (2004) The herpes simplex virus ICP0 RING finger domain inhibits IRF3-and IRF7-mediated activation of interferon-stimulated genes. J. Virol. 78, 1675–1684 doi:10.1128/JVI.78.4.1675-1684.2004 pmid:14747533
    OpenUrlAbstract/FREE Full Text
  115. ↵
    1. Preston C.M.,
    2. Harman A.N.,
    3. Nicholl M.J.
    (2001) Activation of interferon response factor-3 in human cells infected with herpes simplex virus type 1 or human cytomegalovirus. J. Virol. 75, 8909–8916 doi:10.1128/JVI.75.19.8909-8916.2001 pmid:11533154
    OpenUrlAbstract/FREE Full Text
  116. ↵
    1. Thulasi Raman S.N.,
    2. Zhou Y.
    (2016) Networks of host factors that interact with NS1 protein of influenza A virus. Front. Microbiol. 7, 654 doi:10.3389/fmicb.2016.00654
    OpenUrlCrossRef
  117. ↵
    1. Wang B.X.,
    2. Wei L.,
    3. Kotra L.P.,
    4. Brown E.G.,
    5. Fish E.N.
    (2017) A conserved residue, tyrosine (Y) 84, in H5N1 influenza A virus NS1 regulates IFN signaling responses to enhance viral infection. Viruses 9, 107 doi:10.3390/v9050107
    OpenUrlCrossRef
  118. ↵
    1. Pringproa K.,
    2. Rungsiwiwut R.,
    3. Tantilertcharoen R.,
    4. Praphet R.,
    5. Pruksananonda K.,
    6. Baumgärtner W.,
    (2015) Tropism and induction of cytokines in human embryonic-stem cells-derived neural progenitors upon inoculation with highly- pathogenic avian H5N1 influenza virus. PLoS ONE 10, e0135850 doi:10.1371/journal.pone.0135850 pmid:26274828
    OpenUrlCrossRefPubMed
  119. ↵
    1. Liu T.,
    2. Khanna K.M.,
    3. Carriere B.N,
    4. Hendricks R.L.
    (2001) Gamma interferon can prevent herpes simplex virus type 1 reactivation from latency in sensory neurons. J. Virol. 75, 11178–11184 doi:10.1128/JVI.75.22.11178-11184.2001 pmid:11602757
    OpenUrlAbstract/FREE Full Text
  120. ↵
    1. Olsson T.,
    2. Bakhiet M.,
    3. H.öjeberg B.,
    4. Ljungdahl Å.,
    5. Kelic S.,
    6. Edlund C.,
    (1994) Neuronal interferon‐γ immunoreactive molecule: Bioactivities and purification. Eur. J. Immunol. 24, 308–314 doi:10.1002/eji.1830240205 pmid:8299680
    OpenUrlCrossRefPubMedWeb of Science
  121. ↵
    1. Peng W.,
    2. Henderson G.,
    3. Inman M.,
    4. BenMohamed L.,
    5. Perng G-C.,
    6. Wechsler S.L.,
    (2005) The locus encompassing the latency-associated transcript of herpes simplex virus type 1 interferes with and delays interferon expression in productively infected neuroblastoma cells and trigeminal ganglia of acutely infected mice. J. Virol. 79, 6162–6171 doi:10.1128/JVI.79.10.6162-6171.2005 pmid:15858001
    OpenUrlAbstract/FREE Full Text
  122. ↵
    1. Carr D.J.,
    2. Noisakran S.,
    3. Halford W.P.,
    4. Lukacs N.,
    5. Asensio V.,
    6. Campbell I.L.
    (1998) Cytokine and chemokine production in HSV-1 latently infected trigeminal ganglion cell cultures: effects of hyperthermic stress. J. Neuroimmunol. 85, 111–121 doi:10.1016/S0165-5728(97)00206-3 pmid:9630159
    OpenUrlCrossRefPubMedWeb of Science
  123. ↵
    1. Rosato P.C.,
    2. Katzenell S.,
    3. Pesola J.M.,
    4. North B.,
    5. Coen D.M.,
    6. Leib D.A.
    (2016) Neuronal IFN signaling is dispensable for the establishment of HSV-1 latency. Virology 497, 323–327 doi:10.1016/j.virol.2016.06.016 pmid:27518540
    OpenUrlCrossRefPubMed
  124. ↵
    1. Ejlerskov P.,
    2. Hultberg Jeanette G.,
    3. Wang J.,
    4. Carlsson R.,
    5. Ambjørn M.,
    6. Kuss M.,
    (2015) Lack of neuronal IFN-β-IFNAR causes Lewy body- and Parkinson’s disease-like dementia. Cell 163, 324–339 doi:10.1016/j.cell.2015.08.069 pmid:26451483
    OpenUrlCrossRefPubMed
  125. ↵
    1. Kandel E.R.,
    2. Schwartz J.H.,
    3. Jessell T.M.,
    4. Siegelbaum S.A.,
    5. Hudspeth A.J.
    (2000) Principles of Neural Science, McGraw-Hill, New York
  126. ↵
    1. Banati R.B.,
    2. Gehrmann J.,
    3. Schubert P.,
    4. Kreutzberg G.W.
    (1993) Cytotoxicity of microglia. Glia 7, 111–118 doi:10.1002/glia.440070117 pmid:8423058
    OpenUrlCrossRefPubMedWeb of Science
  127. ↵
    1. Zhang J.,
    2. Perry G.,
    3. Smith M.A.,
    4. Robertson D.,
    5. Olson S.J.,
    6. Graham D.G.,
    (1999) Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am. J. Pathol. 154, 1423–1429 doi:10.1016/S0002-9440(10)65396-5 pmid:10329595
    OpenUrlCrossRefPubMedWeb of Science
    1. Gerhard A.,
    2. Pavese N.,
    3. Hotton G.,
    4. Turkheimer F.,
    5. Es M.,
    6. Hammers A.,
    (2006) In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol. Dis. 21, 404–412 doi:10.1016/j.nbd.2005.08.002 pmid:16182554
    OpenUrlCrossRefPubMedWeb of Science
    1. Miklossy J.,
    2. Doudet D.,
    3. Schwab C.,
    4. Yu S.,
    5. McGeer E.,
    6. McGeer P.
    (2006) Role of ICAM-1 in persisting inflammation in Parkinson disease and MPTP monkeys. Exp. Neurol. 197, 275–283 doi:10.1016/j.expneurol.2005.10.034 pmid:16336966
    OpenUrlCrossRefPubMed
  128. ↵
    1. Menendez C.M.,
    2. Jinkins J.K.,
    3. Carr D.J.
    (2016) Resident T cells are unable to control herpes simplex virus-1 activity in the brain ependymal region during latency. J. Immunol. 197, 1262–1275 doi:10.4049/jimmunol.1600207 pmid:27357149
    OpenUrlAbstract/FREE Full Text
    1. Tesoriero C.,
    2. Codita A.,
    3. Zhang M.-D.,
    4. Cherninsky A.,
    5. Karlsson H.,
    6. Grassi-Zucconi G.,
    (2016) H1N1 influenza virus induces narcolepsy-like sleep disruption and targets sleep–wake regulatory neurons in mice. Proc. Natl. Acad. Sci. U.S.A. 113, E368–E377 doi:10.1073/pnas.1521463112
    OpenUrlAbstract/FREE Full Text
    1. Arlehamn C.S.L.,
    2. Alcalay R.N.,
    3. Garretti F.,
    4. Cote L.,
    5. Kanter E.,
    6. Agin-Liebes J.,
    (2017) Immune response in Parkinson’s disease driven by HLA display of α-synuclein peptides. J. Immnol. 198 (1 Supplement), 55.26
    OpenUrl
    1. Ng Y.P.,
    2. Lee S.M.Y.,
    3. Cheung T.K.W.,
    4. Nicholls J.M.,
    5. Peiris J.S.M.,
    6. Ip N.Y.
    (2010) Avian influenza H5N1 virus induces cytopathy and proinflammatory cytokine responses in human astrocytic and neuronal cell lines. Neuroscience 168, 613–623 doi:10.1016/j.neuroscience.2010.04.013 pmid:20398740
    OpenUrlCrossRefPubMed
    1. Takahashi M.,
    2. Yamada T.,
    3. Nakanishi K.,
    4. Fujita K.,
    5. Nakajima K.,
    6. Nobusawa E.,
    (1997) Influenza a virus infection of primary cultured cells from rat fetal brain. Parkinsonism Relat. Disord. 3, 97–102 doi:10.1016/S1353-8020(97)00010-2
    OpenUrlCrossRefPubMed
  129. ↵
    1. Friedman L.G.,
    2. Lachenmayer M.L.,
    3. Wang J.,
    4. He L.,
    5. Poulose S.M.,
    6. Komatsu M.,
    (2012) Disrupted autophagy leads to dopaminergic axon and dendrite degeneration and promotes presynaptic accumulation of α-synuclein and LRRK2 in the brain. J. Neurosci. 32, 7585–7593 doi:10.1523/JNEUROSCI.5809-11.2012 pmid:22649237
    OpenUrlAbstract/FREE Full Text
    1. Schöndorf D.C.,
    2. Aureli M.,
    3. McAllister F.E.,
    4. Hindley C.J.,
    5. Mayer F.,
    6. Schmid B.,
    (2014) iPSC-derived neurons from GBA1-associated Parkinson’s disease patients show autophagic defects and impaired calcium homeostasis. Nat. Commun. 5, 4028 doi:10.1038/ncomms5028 pmid:24905578
    OpenUrlCrossRefPubMed
  130. ↵
    1. Tallóczy Z.,
    2. Virgin I.,
    3. Herbert L.B.
    (2006) PKR-dependent xenophagic degradation of herpes simplex virus type 1. Autophagy 2, 24–29 doi:10.4161/auto.2176 pmid:16874088
    OpenUrlCrossRefPubMedWeb of Science
  131. ↵
    1. Orvedahl A.,
    2. Alexander D.,
    3. Tallóczy Z.,
    4. Sun Q.,
    5. Wei Y.,
    6. Zhang W.,
    (2007) HSV-1 ICP34. 5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe 1, 23–35 doi:10.1016/j.chom.2006.12.001
    OpenUrlCrossRefPubMedWeb of Science
  132. ↵
    1. Kang R.,
    2. Zeh H.,
    3. Lotze M.,
    4. Tang D.
    (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ. 18, 571–580 doi:10.1038/cdd.2010.191
    OpenUrlCrossRefPubMedWeb of Science
  133. ↵
    1. Lussignol M.,
    2. Queval C.,
    3. Bernet-Camard M.-F.,
    4. Cotte-Laffitte J.,
    5. Beau I.,
    6. Codogno P.,
    (2013) The herpes simplex virus 1 Us11 protein inhibits autophagy through its interaction with the protein kinase PKR. J. Virol. 87, 859–871 doi:10.1128/JVI.01158-12 pmid:23115300
    OpenUrlAbstract/FREE Full Text
    1. Gannagé M.,
    2. Dormann D.,
    3. Albrecht R.,
    4. Dengjel J.,
    5. Torossi T.,
    6. Rämer P.C.,
    (2009) Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes. Cell Host Microbe 6, 367–380 doi:10.1016/j.chom.2009.09.005
    OpenUrlCrossRefPubMedWeb of Science
    1. Garcia-Reitböck P.,
    2. Anichtchik O.,
    3. Bellucci A.,
    4. Iovino M.,
    5. Ballini C.,
    6. Fineberg E.,
    (2010) SNARE protein redistribution and synaptic failure in a transgenic mouse model of Parkinson’s disease. Brain 133, 2032–2044 doi:10.1093/brain/awq132 pmid:20534649
    OpenUrlCrossRefPubMedWeb of Science
    1. Nash J.,
    2. Johnston T.,
    3. Collingridge G.,
    4. Garner C.,
    5. Brotchie J.
    (2005) Subcellular redistribution of the synapse-associated proteins PSD-95 and SAP97 in animal models of Parkinson’s disease and L-DOPA-induced dyskinesia. FASEB J. 19, 583–585 doi:10.1096/fj.04-1854fje pmid:15703272
    OpenUrlAbstract/FREE Full Text
  134. ↵
    1. Prüss H.,
    2. Finke C.,
    3. Höltje M.,
    4. Hofmann J.,
    5. Klingbeil C.,
    6. Probst C.,
    (2012) N-methyl-D-aspartate receptor antibodies in herpes simplex encephalitis. Ann. Neurol. 72, 902–911 doi:10.1002/ana.23689 pmid:23280840
    OpenUrlCrossRefPubMed
  135. ↵
    1. Piacentini R.,
    2. Puma D.D.L.,
    3. Ripoli C.,
    4. Marcocci M.E.,
    5. De Chiara G.,
    6. Garaci E.,
    (2015) Herpes Simplex Virus type-1 infection induces synaptic dysfunction in cultured cortical neurons via GSK-3 activation and intraneuronal amyloid-β protein accumulation. Sci. Rep. 5, doi:10.1038/srep15444 pmid:26487282
    OpenUrlCrossRefPubMed
  136. ↵
    1. Zhang H.,
    2. Li W.,
    3. Wang G.,
    4. Su Y.,
    5. Zhang C.,
    6. Chen X.,
    (2011) The distinct binding properties between avian/human influenza A virus NS1 and Postsynaptic density protein-95 (PSD-95), and inhibition of nitric oxide production. Virol. J. 8, 298 doi:10.1186/1743-422X-8-298 pmid:21668967
    OpenUrlCrossRefPubMed
    1. Fatemi S.H.,
    2. Sidwell R.,
    3. Kist D.,
    4. Akhter P.,
    5. Meltzer H.Y.,
    6. Bailey K.,
    (1998) Differential expression of synaptosome-associated protein 25 kDa [SNAP-25] in hippocampi of neonatal mice following exposure to human influenza virus in utero. Brain Res. 800, 1–9 doi:10.1016/S0006-8993(98)00450-8 pmid:9685568
    OpenUrlCrossRefPubMedWeb of Science
  137. ↵
    1. Day M.,
    2. Wang Z.,
    3. Ding J.,
    4. An X.,
    5. Ingham C.A.,
    6. Shering A.F.,
    (2006) Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nat. Neurosci. 9, 251 doi:10.1038/nn1632 pmid:16415865
    OpenUrlCrossRefPubMedWeb of Science
  138. ↵
    1. Kouroupi G.,
    2. Taoufik E.,
    3. Vlachos I.S.,
    4. Tsioras K.,
    5. Antoniou N.,
    6. Papastefanaki F.,
    (2017) Defective synaptic connectivity and axonal neuropathology in a human iPSC-based model of familial Parkinson’s disease. Proc. Natl. Acad. Sci. U.S.A. 114, E3679–E388 doi:10.1073/pnas.1617259114
    OpenUrlAbstract/FREE Full Text
    1. Hacohen Y.,
    2. Deiva K.,
    3. Pettingill P.,
    4. Waters P.,
    5. Siddiqui A.,
    6. Chretien P.,
    (2014) N-methyl-D-aspartate receptor antibodies in post–herpes simplex virus encephalitis neurological relapse. Mov. Disord. 29, 90–96 doi:10.1002/mds.25626 pmid:24014096
    OpenUrlCrossRefPubMed
  139. ↵
    1. Brask J.,
    2. Chauhan A.,
    3. Hill R.H.,
    4. Ljunggren H.-G.,
    5. Kristensson K.
    (2005) Effects on synaptic activity in cultured hippocampal neurons by influenza A viral proteins. J. Neurovirol. 11, 395–402 doi:10.1080/13550280500186916 pmid:16162482
    OpenUrlCrossRefPubMedWeb of Science
  140. ↵
    1. Hauwel M.,
    2. Furon E.,
    3. Canova C.,
    4. Griffiths M.,
    5. Neal J.,
    6. Gasque P.
    (2005) Innate (inherent) control of brain infection, brain inflammation and brain repair: the role of microglia, astrocytes, “protective” glial stem cells and stromal ependymal cells. Brain Res. Rev. 48, 220–233, doi:10.1016/j.brainresrev.2004.12.012 pmid:15850661
    OpenUrlCrossRefPubMed
  141. ↵
    1. Farina C.,
    2. Krumbholz M.,
    3. Giese T.,
    4. Hartmann G.,
    5. Aloisi F.,
    6. Meinl E.
    (2005) Preferential expression and function of Toll-like receptor 3 in human astrocytes. J. Neuroimmunol. 159, 12–19 doi:10.1016/j.jneuroim.2004.09.009 pmid:15652398
    OpenUrlCrossRefPubMedWeb of Science
  142. ↵
    1. Bsibsi M.,
    2. Persoon‐Deen C.,
    3. Verwer R.W.,
    4. Meeuwsen S.,
    5. Ravid R.,
    6. Van Noort J.M.
    (2006) Toll‐like receptor 3 on adult human astrocytes triggers production of neuroprotective mediators. Glia 53, 688–695 doi:10.1002/glia.20328 pmid:16482523
    OpenUrlCrossRefPubMed
  143. ↵
    1. Carpentier P.A.,
    2. Begolka W.S.,
    3. Olson J.K.,
    4. Elhofy A.,
    5. Karpus W.J.,
    6. Miller S.D.
    (2005) Differential activation of astrocytes by innate and adaptive immune stimuli. Glia 49, 360–374 doi:10.1002/glia.20117 pmid:15538753
    OpenUrlCrossRefPubMedWeb of Science
  144. ↵
    1. Jack C.S.,
    2. Arbour N.,
    3. Manusow J.,
    4. Montgrain V.,
    5. Blain M.,
    6. McCrea E.,
    (2005) TLR signaling tailors innate immune responses in human microglia and astrocytes. J. Immunol. 175, 4320–4330 doi:10.4049/jimmunol.175.7.4320 pmid:16177072
    OpenUrlAbstract/FREE Full Text
  145. ↵
    1. Park C.,
    2. Lee S.,
    3. Cho I.H.,
    4. Lee H.K.,
    5. Kim D.,
    6. Choi S.Y.,
    (2006) TLR3‐mediated signal induces proinflammatory cytokine and chemokine gene expression in astrocytes: differential signaling mechanisms of TLR3‐induced IP‐10 and IL‐8 gene expression. Glia 53, 248–256 doi:10.1002/glia.20278 pmid:16265667
    OpenUrlCrossRefPubMed
  146. ↵
    1. Zhao Y.,
    2. Rivieccio M.A.,
    3. Lutz S.,
    4. Scemes E.,
    5. Brosnan C.F.
    (2006) The TLR3 ligand polyI: C downregulates connexin 43 expression and function in astrocytes by a mechanism involving the NF‐κB and PI3 kinase pathways. Glia 54, 775–785 doi:10.1002/glia.20418 pmid:16958087
    OpenUrlCrossRefPubMedWeb of Science
  147. ↵
    1. Ezan P.,
    2. André P.,
    3. Cisternino S.,
    4. Saubaméa B.,
    5. Boulay A.-C.,
    6. Doutremer S.,
    (2012) Deletion of astroglial connexins weakens the blood–brain barrier. J. Cereb. Blood Flow Metab. 32, 1457–1467 doi:10.1038/jcbfm.2012.45
    OpenUrlCrossRefPubMed
  148. ↵
    1. Scumpia P.O.,
    2. Kelly K.M.,
    3. Reeves W.H.,
    4. Stevens B.R.
    (2005) Double‐stranded RNA signals antiviral and inflammatory programs and dysfunctional glutamate transport in TLR3‐expressing astrocytes. Glia 52, 153–162 doi:10.1002/glia.20234 pmid:15920723
    OpenUrlCrossRefPubMedWeb of Science
  149. ↵
    1. Kavouras J.H.,
    2. Prandovszky E.,
    3. Valyi-Nagy K.,
    4. Kovacs S.K.,
    5. Tiwari V.,
    6. Kovacs M.,
    (2007) Herpes simplex virus type 1 infection induces oxidative stress and the release of bioactive lipid peroxidation by-products in mouse P19N neural cell cultures. J. Neurovirol. 13, 416–425 doi:10.1080/13550280701460573 pmid:17994426
    OpenUrlCrossRefPubMed
  150. ↵
    1. Valyi-Nagy T.,
    2. Olson S.J.,
    3. Valyi-Nagy K.,
    4. Montine T.J.,
    5. Dermody T.S.
    (2000) Herpes simplex virus type 1 latency in the murine nervous system is associated with oxidative damage to neurons. Virology 278, 309–321 doi:10.1006/viro.2000.0678 pmid:11118355
    OpenUrlCrossRefPubMedWeb of Science
  151. ↵
    1. Picconi B.,
    2. Piccoli G.,
    3. Calabresi P.
    (2012) Synaptic dysfunction in Parkinson’s disease. Synaptic Plasticity 553–572 doi:10.1007/978-3-7091-0932-8_24
    OpenUrlCrossRefPubMed
  152. ↵
    1. Scott D.A.,
    2. Tabarean I.,
    3. Tang Y.,
    4. Cartier A.,
    5. Masliah E.,
    6. Roy S.
    (2010) A pathologic cascade leading to synaptic dysfunction in α-synuclein-induced neurodegeneration. J. Neurosci. 30, 8083–8095 doi:10.1523/JNEUROSCI.1091-10.2010 pmid:20554859
    OpenUrlAbstract/FREE Full Text
  153. ↵
    1. Volpicelli-Daley L.A.,
    2. Luk K.C.,
    3. Patel T.P.,
    4. Tanik S.A.,
    5. Riddle D.M.,
    6. Stieber A.,
    (2011) Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72, 57–71 doi:10.1016/j.neuron.2011.08.033 pmid:21982369
    OpenUrlCrossRefPubMedWeb of Science
  154. ↵
    1. Bernard V.,
    2. Gardiol A.,
    3. Faucheux B.,
    4. Bloch B.,
    5. Agid Y.,
    6. Hirsch E.C.
    (1996) Expression of glutamate receptors in the human and rat basal ganglia: effect of the dopaminergic denervation on AMPA receptor gene expression in the striatopallidal complex in Parkinson’s disease and rat with 6‐OHDA lesion. J. Comp. Neurol. 368, 553–568 doi:10.1002/(SICI)1096-9861(19960513)368:4%3c553::AID-CNE7%3e3.0.CO;2-3 pmid:8744443
    OpenUrlCrossRefPubMedWeb of Science
  155. ↵
    1. Ebrahimie E.,
    2. Nurollah Z.,
    3. Ebrahimi M.,
    4. Hemmatzadeh F.,
    5. Ignjatovic J.
    (2015) Unique ability of pandemic influenza to downregulate the genes involved in neuronal disorders. Mol. Biol. Rep. 42, 1377–1390 doi:10.1007/s11033-015-3916-4 pmid:26246405
    OpenUrlCrossRefPubMed
  156. ↵
    1. Klionsky D.J.,
    2. Abdelmohsen K.,
    3. Abe A.,
    4. Abedin M.J.,
    5. Abeliovich H.,
    6. Acevedo Arozena A.,
    (2016) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 12, 1–222 doi:10.1080/15548627.2015.1100356 pmid:26799652
    OpenUrlCrossRefPubMed
  157. ↵
    1. Shoji-Kawata S.,
    2. Levine B.
    (2009) Autophagy, antiviral immunity, and viral countermeasures. Biochim. Biophys. Acta 1793, 1478–1484 doi:10.1016/j.bbamcr.2009.02.008
    OpenUrlCrossRefPubMed
  158. ↵
    1. Yordy B.,
    2. Iijima N.,
    3. Huttner A.,
    4. Leib D.,
    5. Iwasaki A.
    (2012) A neuron-specific role for autophagy in antiviral defense against herpes simplex virus. Cell Host Microbe 12, 334–345 doi:10.1016/j.chom.2012.07.013
    OpenUrlCrossRefPubMedWeb of Science
  159. ↵
    1. Alexander D.E.,
    2. Ward S.L.,
    3. Mizushima N.,
    4. Levine B.,
    5. Leib D.A.
    (2007) Analysis of the role of autophagy in replication of herpes simplex virus in cell culture. J. Virol. 81, 12128–12134 doi:10.1128/JVI.01356-07 pmid:17855538
    OpenUrlAbstract/FREE Full Text
  160. ↵
    1. He B.,
    2. Gross M.,
    3. Roizman B.
    (1997) The γ134. 5 protein of herpes simplex virus 1 complexes with protein phosphatase 1α to dephosphorylate the α subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc. Natl. Acad. Sci. U.S.A. 94, 843–848 doi:10.1073/pnas.94.3.843
    OpenUrlAbstract/FREE Full Text
  161. ↵
    1. Mulvey M.,
    2. Poppers J.,
    3. Ladd A.,
    4. Mohr I.
    (1999) A herpesvirus ribosome-associated, RNA-binding protein confers a growth advantage upon mutants deficient in a GADD34-related function. J. Virol. 73, 3375–3385 pmid:10074192
    OpenUrlAbstract/FREE Full Text
  162. ↵
    1. Poppers J.,
    2. Mulvey M.,
    3. Khoo D.,
    4. Mohr I.
    (2000) Inhibition of PKR activation by the proline-rich RNA binding domain of the herpes simplex virus type 1 Us11 protein. J. Virol. 74, 11215–11221 doi:10.1128/JVI.74.23.11215-11221.2000 pmid:11070019
    OpenUrlAbstract/FREE Full Text
  163. ↵
    1. Leib D.A.,
    2. Alexander D.E.,
    3. Cox D.,
    4. Yin J.,
    5. Ferguson T.A.
    (2009) Interaction of ICP34. 5 with Beclin 1 modulates herpes simplex virus type 1 pathogenesis through control of CD4+ T-cell responses. J. Virol. 83, 12164–12171 doi:10.1128/JVI.01676-09 pmid:19759141
    OpenUrlAbstract/FREE Full Text
  164. ↵
    1. Mori I.,
    2. Goshima F.,
    3. Imai Y.,
    4. Kohsaka S.,
    5. Sugiyama T.,
    6. Yoshida T.,
    (2002) Olfactory receptor neurons prevent dissemination of neurovirulent influenza A virus into the brain by undergoing virus-induced apoptosis. J. Gen. Virol. 83, 2109–2116 doi:10.1099/0022-1317-83-9-2109 pmid:12185263
    OpenUrlCrossRefPubMedWeb of Science
  165. ↵
    1. Santana S.,
    2. Recuero M.,
    3. Bullido M.J.,
    4. Valdivieso F.,
    5. Aldudo J.
    (2012) Herpes simplex virus type I induces the accumulation of intracellular β-amyloid in autophagic compartments and the inhibition of the non-amyloidogenic pathway in human neuroblastoma cells. Neurobiol. Aging 33, 430.e19–430.e33 doi:10.1016/j.neurobiolaging.2010.12.010
    OpenUrlCrossRefPubMed
  166. ↵
    1. Komatsu M.,
    2. Waguri S.,
    3. Chiba T.,
    4. Murata S.,
    5. Iwata J.,
    6. Tanida I.,
    (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884 doi:10.1038/nature04723 pmid:16625205
    OpenUrlCrossRefPubMedWeb of Science
View Abstract
Previous Article
Back to top

June 2018

Volume: 2 Issue: 2

  • Table of Contents
  • Index by author

Actions

Email

Thank you for your interest in spreading the word about Neuronal Signaling.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A role for viral infections in Parkinson’s etiology?
(Your Name) has forwarded a page to you from Neuronal Signaling
(Your Name) thought you would like to see this page from the Neuronal Signaling web site.
Share
A role for viral infections in Parkinson’s etiology?
Laura K. Olsen, Eilis Dowd, Declan P. McKernan
Neuronal Signaling Jun 2018, 2 (2) NS20170166; DOI: 10.1042/NS20170166
del.icio.us logo Digg logo Reddit logo Technorati logo Twitter logo CiteULike logo Facebook logo Mendeley logo
Citation Tools
A role for viral infections in Parkinson’s etiology?
Laura K. Olsen, Eilis Dowd, Declan P. McKernan
Neuronal Signaling Jun 2018, 2 (2) NS20170166; DOI: 10.1042/NS20170166

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print
Alerts

Please log in to add an alert for this article.

Request Permissions
Save to my folders

View Full PDF

 Open in Utopia Docs
  • Tweet Widget
  • Facebook Like

Jump To

  • Article
    • Abstract
    • Introduction
    • Viruses as a risk factor for PD: sifting through historical and clinical evidence
    • CNS viral entry: HSV-I and influenza A
    • Viral infection in the CNS: inflammation, synaptic dysfunction, and autophagy disruption
    • Conclusion
    • Competing interests
    • References
  • Figures
  • Info & Metrics
  • PDF

Keywords

neurodegeneration
neuroinflammation
Parkinsons disease
viral infection

Related Articles

Cited By...

  • Portland Press Homepage
  • Publish With Us
  • Advertising
  • Technical Support
  • Neuronal Signaling
  • Biochemical Journal
  • Clinical Science
  • Essays in Biochemistry
  • Biochemical Society Transactions
  • Bioscience Reports
  • Emerging Topics in Life Sciences
  • Cell Signalling Biology
  • Biochemical Society Symposia

Portland Press Limited
Charles Darwin House
12 Roger Street
London WC1N 2JU
Tel: +44(0) 20 7685 2410
Fax: +44(0) 20 7685 2469
Email: editorial@portlandpress.com

The Biochemical Society